4.7 Article

Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury

期刊

BRAIN
卷 135, 期 -, 页码 1253-1267

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/aws053

关键词

BDNF; cortical injury; corticospinal tract; functional recovery; plasticity

资金

  1. Core Research for Evolutional Science and Technology from Japan Science and Technology Agency

向作者/读者索取更多资源

Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery of motor function following brain injury. After destruction of unilateral sensorimotor cortex, intact-side corticospinal tract formed sprouting fibres into the specific lamina of the denervated side of the cervical spinal cord, and made new contact with two types of spinal interneurons-segmental and propriospinal neurons. Anatomical and electrophysiological analyses revealed that this rewired corticospinal tract functionally linked to motor neurons and forelimb muscles. This newly formed corticospinal circuit was necessary for motor recovery, because transection of the circuit led to impairment of recovering forelimb function. Knockdown of brain-derived neurotrophic factor in the spinal neurons or its receptor in the intact corticospinal neurons diminished fibre sprouting of the corticospinal tract. Our findings establish the anatomical, functional and molecular basis for the intrinsic capacity of neurons to form compensatory neural network following injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据