4.7 Article

Abnormal bidirectional plasticity-like effects in Parkinson's disease

期刊

BRAIN
卷 134, 期 -, 页码 2312-2320

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awr158

关键词

long-term potentiation; depotentiation; Parkinson's disease; levodopa; dyskinesia

资金

  1. National Science Council [NSC 94-2314-B-182A-057, NSC 95-2314-B-182A-012, NSC 96-2314-B-182A-003]
  2. National Health Research Institutes of Taiwan [NHRI-EX99-9913EC]
  3. Chang Gung Memorial Hospital [CMRPG381282]

向作者/读者索取更多资源

Levodopa-induced dyskinesia is a major complication of long-term dopamine replacement therapy for Parkinson's disease that becomes increasingly problematic in advanced Parkinson's disease. Although the cause of levodopa-induced dyskinesias is still unclear, recent work in animal models of the corticostriatal system has suggested that levodopa-induced dyskinesias might result from abnormal control of synaptic plasticity. In the present study, we aimed to explore control of plasticity in patients with Parkinson's disease with and without levodopa-induced dyskinesias by taking advantage of a newly developed protocol that tests depotentiation of pre-existing long-term potentiation-like synaptic facilitation. Long-term potentiation-like plasticity and its reversibility were studied in the motor cortex of 10 healthy subjects, 10 patients with Parkinson's disease and levodopa-induced dyskinesias, who took half of the regular dose of levodopa and 10 patients with Parkinson's disease without levodopa-induced dyskinesias, who took either half or the full dose of levodopa. Patients with Parkinson's disease without levodopa-induced dyskinesias had normal long-term potentiation- and depotentiation-like effects when they took their full dose of levodopa, but there was no long-term potentiation-like effect when they were on half dose of levodopa. In contrast, patients with levodopa-induced dyskinesias could be successfully potentiated when they were on half their usual dose of levodopa; however, they were unresponsive to the depotentiation protocol. The results suggest that depotentiation is abnormal in the motor cortex of patients with Parkinson's disease with levodopa-induced dyskinesias and that their long-term potentiation-like plasticity is more readily affected by administration of levodopa than their clinical symptoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据