4.7 Article

High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings

期刊

BRAIN
卷 131, 期 -, 页码 928-937

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awn006

关键词

high-frequency oscillations; ripple; fast ripple; intracranial EEG; epilepsy

资金

  1. NINDS NIH HHS [R01NS048598, R01 NS048598, R01 NS041811-08, K23 NS 4795, R01 NS041811, R01 NS048598-01A2, 1NS041811-01, R01 NS048598-02] Funding Source: Medline
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS048598, R01NS041811] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Neuronal oscillations span a wide range of spatial and temporal scales that extend beyond traditional clinical EEG. Recent research suggests that high-frequency oscillations (HFO), in the ripple (80-250 Hz) and fast ripple (250-1000 Hz) frequency range, may be signatures of epileptogenic brain and involved in the generation of seizures. However, most research investigating HFO in humans comes from microwire recordings, whose relationship to standard clinical intracranial EEG (iEEG) has not been explored. In this study iEEG recordings (DC -9000 Hz) were obtained from human medial temporal lobe using custom depth electrodes containing both microwires and clinical macroelectrodes. Ripple and fast-ripple HFO recorded from both microwires and clinical macroelectrodes were increased in seizure generating brain regions compared to control regions. The distribution of HFO frequencies recorded from the macroelectrodes was concentrated in the ripple frequency range, compared to a broad distribution of HFO frequencies recorded from microwires. The average frequency of ripple HFO recorded from macroelectrodes was lower than that recorded from microwires (143.3 +/- 49.3 Hz versus 116.3 +/- 38.4, Wilcoxon rank sum P<0.0001). Fast-ripple HFO were most often recorded on a single microwire, supporting the hypothesis that fast-ripple HFO are primarily generated by highly localized, sub-millimeter scale neuronal assemblies that are most effectively sampled by microwire electrodes. Future research will address the clinical utility of these recordings for localizing epileptogenic networks and understanding seizure generation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据