4.4 Article

Simulating Australian Urban Climate in a Mesoscale Atmospheric Numerical Model

期刊

BOUNDARY-LAYER METEOROLOGY
卷 142, 期 1, 页码 149-175

出版社

SPRINGER
DOI: 10.1007/s10546-011-9663-8

关键词

Mesoscale environmental modelling; Surface energy balance; Urban canopy model

向作者/读者索取更多资源

We develop an urban canopy scheme coupled to a mesoscale atmospheric numerical model and evaluate the simulated climate of an Australian city. The urban canopy scheme is based on the Town Energy Budget approach, but is modified to efficiently represent the predominately suburban component of Australian cities in regional climate simulations. Energy conservation is improved by adding a simple model of air-conditioning to prevent the urban parametrization acting as an energy sink during the Australian summer. In-canyon vegetation for suburban areas is represented by a big-leaf model, but with a largely reduced set of prognostic variables compared to previous approaches. Although we have used a recirculation/venting based parametrization of in-canyon turbulent heat fluxes that employs two canyon wall energy budgets, we avoid using a fixed canyon orientation by averaging the canyon fluxes after integrating over 180A degrees of possible canyon orientations. The urban canopy scheme is evaluated by simulating the climate for Melbourne, Australia after coupling it to The Air Pollution Model. The combined system was found to predict a realistic climatology of air temperatures and winds when compared with observations from Environmental Protection Authority monitoring stations. The model also produced a plausible partitioning of the urban energy budget when compared to urban flux-tower studies. Overall, the urban canyon parametrization appears to have reasonable potential for studying present and predicting changes in future Australian urban climates in regional climate simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据