4.4 Article

Velocity and Surface Shear Stress Distributions Behind a Rough-to-Smooth Surface Transition: A Simple New Model

期刊

BOUNDARY-LAYER METEOROLOGY
卷 130, 期 1, 页码 29-41

出版社

SPRINGER
DOI: 10.1007/s10546-008-9330-x

关键词

Atmospheric boundary layer; Large-eddy simulation; Roughness transition; Surface shear stress model

资金

  1. NSF [EAR-0537856]
  2. NASA [NNG06GE256]

向作者/读者索取更多资源

A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z (01))/ln(delta (i) /z (01)), where z, delta (i) and z (01) are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据