4.1 Article

Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase

期刊

BOTANY
卷 87, 期 6, 页码 616-625

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/B09-036

关键词

condensed tannin; dihydroflavonol reductase; flavonoids; oilseed rape; rapeseed; transparent testa

资金

  1. Genome Alberta project on Designing Oilseeds for Tomorrow's Markets
  2. National Research Council of Canada

向作者/读者索取更多资源

The yellow seed characteristic in Brassica napus L. is desirable because of its association with higher oil content and better quality of oil-extracted meal. YN01-429 is a yellow-seeded canola-quality germplasm developed in Canada arising from several years of research. Seed-coat pigmentation is due to oxidized proanthocyanidins (PA; condensed tannins) derived from phenylpropanoids and malonyl CoA. We found PA accumulation to be most robust in young seed coats (20 d post anthesis; dpa) of a related black-seeded line N89-53 and only very little PA in YN01-429, which also contained much less extractable phenolics. The flavonol content, however, did not show as great a difference between these two lines. Furthermore, sinapine, a product of the general phenylpropanoid metabolism, was present at comparable levels in the embryos of both lines. Dihydroflavonol reductase (DFR) activity that commits phenolics to PA synthesis was lower in YN01-429 seed coats. The results of Southern blot and in silico analyses were indicative of two copies of the DFR gene in B. napus. Both copies were functional in YN01-429, ruling out homeoallelic repression or silencing, but together they showed very low expression levels (17-fold fewer transcripts) relative to DFR activity in N89-53 seed coats. These results collectively suggest that YN01-429 differs in regulatory circuits that impact the PA synthesis branch much more than the flavonol synthesis branch in the seed coats and such circuits do not impinge upon general phenylpropanoid metabolism in the embryos.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据