4.6 Article

MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix

期刊

BONE
卷 55, 期 2, 页码 487-494

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2013.04.002

关键词

miR-214; Osterix; Osteogenic differentiation; C2C12

资金

  1. National Natural Science Foundation of China [81071525]
  2. Key Laboratory for Laboratory Medicine of Jiangsu Province of China [XK201114]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions
  4. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

向作者/读者索取更多资源

Osterix (Osx) is an osteoblast-specific transcription factor that is essential for osteoblast differentiation and bone formation. Osx-null mice, which exhibit a complete absence of bone formation and arrested osteoblast differentiation, die immediately after birth. However, our understanding of the regulatory mechanism of Osx expression remains poor. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play pivotal Riles in diverse biological processes, including the development, differentiation, proliferation, survival, and oncogenesis of cells and organisms. In this study, we aimed to investigate the impact of miRNAs on Osx expression. Bioinformatic analyses predicted that miR-214 would be a potential regulator of Osx. The direct binding of miR-214 to the Osx 3' untranslated region (3' UTR) was demonstrated by a luciferase reporter assay using a construct containing the Osx 3' UTR. Deletion mutant construction revealed that the Osx 3' UTR contained two miR-214 binding sites. MiR-214 expression was inversely correlated with Osx expression in Saos-2 and U2OS cells. The forced expression of miR-214 in Saos-2 cells led to a reduction in the level of Osx protein. Moreover, the role of miR-214 in the osteogenic differentiation of C2C12 cells was investigated. We found that the osteogenic differentiation of C2C12 cells was enhanced by the downregulation of miR-214 expression, as measured by increased alkaline phosphatase activity and matrix mineralization. Taken together, these results indicate that miR-214 is a novel regulator of Osx, and that it plays an important role in the osteogenic differentiation of C2C12 cells as a suppressor. (C)2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据