4.6 Article

Inactivation of Lrp5 in osteocytes reduces Young's modulus and responsiveness to the mechanical loading

期刊

BONE
卷 54, 期 1, 页码 35-43

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2013.01.033

关键词

Lrp5; Osteocytes; Mechanotransduction; Young's modulus; Osteoporosis

资金

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases [AR53237, AR52144]

向作者/读者索取更多资源

Low-density-lipoprotein receptor-related protein 5 (Lrp5) is a co-receptor in Wnt signaling, which plays a critical role in development and maintenance of bone. Osteoporosis-pseudoglioma syndrome, for instance, arises from loss-of-function mutations in Lrp5, and global deletion of Lrp5 in mice results in significantly lower bone mineral density. Since osteocytes are proposed to act as a mechanosensor in the bone, we addressed a question whether a conditional loss-of-function mutation of Lrp5 selective to osteocytes (Dmp1-Cre;Lrp5(f/f)) would alter responses to ulna loading. Loading was applied to the right ulna for 3 mm (360 cycles at 2 Hz) at a peak force of 2.65 N for 3 consecutive days, and the contralateral ulna was used as a non-loaded control. Young's modulus was determined using a midshaft section of the femur. The results showed that compared to age-matched litter-mate controls, mice lacking Lrp5 in osteocytes exhibited smaller skeletal size with reduced bone mineral density and content. Compared to controls, Lrp5 deletion in osteocytes also led to a 4.6-fold reduction in Young's modulus. In response to ulna loading, mineralizing surface, mineral apposition rate, and bone formation rate were diminished in mice lacking Lrp5 in osteocytes by 52%, 85%, and 69%, respectively. Collectively, the results support the notion that the loss-of-function mutation of Lrp5 in osteocytes causes suppression of mechanoresponsiveness and reduces bone mass and Young's modulus. In summary, Lrp5-mediated Wnt signaling significantly contributes to maintenance of mechanical properties and bone mass. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据