4.6 Article

Anatomic variations of the lacunar-canalicular system influence solute transport in bone

期刊

BONE
卷 45, 期 4, 页码 704-710

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2009.06.026

关键词

Osteocytes; Bone fluid flow; Lacunar density; Canalicular number; Transport enhancement

资金

  1. NIH [P20RRO16458, R01AR054385]
  2. University of Delaware Research Foundation

向作者/读者索取更多资源

Solute transport in the lacunar-canalicular system (LCS) is essential for bone metabolism and mechanotransduction. Using the technique of fluorescence recovery after photobleaching (FRAP) we have been quantifying solute transport in the LCS of murine long bone as a function of loading parameters and molecular size. However, the influence of LCS anatomy, which varies among animal species, bone type and location, age and health condition, is not well understood. In this study, we developed a mathematical model to simulate solute convection in the LCS during a FRAP experiment under a physiological cyclic flow. We found that the transport rate (the reciprocal time constant for refilling the photobleached lacunar increased linearly with canalicular number and decreased with canalicular length for both diffusion and convection. As a result, the transport enhancement of convection over diffusion was much less sensitive to the variations associated with chick, mouse, rabbit, bovine, dog, horse, and human LCS anatomy, when compared with the rates of diffusion or convection alone. Canalicular density did not affect transport enhancement, while solute size and the lacunar density had more complicated, non-linear effects. This parametric study suggests that solute transport could be altered by varying LCS parameters, and that the anatomical details of the LCS need systemic examination to further understand the etiology of aged and osteoporotic bones. (c) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据