4.5 Article

Modeling Physical and Environmental Side Constraints in Traffic Equilibrium Problem

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15568318.2010.488277

关键词

decomposition algorithm; emission restriction; physical capacity; side constraints; traffic equilibrium; variational inequality

向作者/读者索取更多资源

The traffic equilibrium problem plays an important role in urban transportation planning and management. It predicts vehicular flows on the transportation network by assigning travel demands given in terms of an origin-destination trip table to routes in a network according to some behavioral route choice rules. In this paper, we enhance the realism of the traffic equilibrium problem by explicit modeling various physical and environment restrictions as side constraints. These side constraints are a useful means for describing queuing and congestion effects, restraining traffic flows to limit the amount of emissions, and modeling different traffic control policies. A generalized side-constrained traffic equilibrium (GSCTE) model is presented and some characterizations of the equilibrium solutions are discussed. The model is formulated as a variational inequality problem and solved by a predictor-corrector decomposition algorithm. Two numerical experiments are conducted to demonstrate some properties of the GSCTE model and the convergence properties of the decomposition algorithm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据