4.7 Article

High-resolution simulations of atmospheric CO2 over complex terrain - representing the Ochsenkopf mountain tall tower

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 11, 期 15, 页码 7445-7464

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-11-7445-2011

关键词

-

向作者/读者索取更多资源

Accurate simulation of the spatial and temporal variability of tracer mixing ratios over complex terrain is challenging, but essential in order to utilize measurements made in complex orography (e.g. mountain and coastal sites) in an atmospheric inverse framework to better estimate regional fluxes of these trace gases. This study investigates the ability of high-resolution modeling tools to simulate meteorological and CO2 fields around Ochsenkopf tall tower, situated in Fichtelgebirge mountain range-Germany (1022 m a.s.l.; 50 degrees 1'48 '' N, 11 degrees 48'30 '' E). We used tower measurements made at different heights for different seasons together with the measurements from an aircraft campaign. Two tracer transport models - WRF (Eulerian based) and STILT (Lagrangian based), both with a 2 km horizontal resolution - are used together with the satellite-based biospheric model VPRM to simulate the distribution of atmospheric CO2 concentration over Ochsenkopf. The results suggest that the high-resolution models can capture diurnal, seasonal and synoptic variability of observed mixing ratios much better than coarse global models. The effects of mesoscale transports such as mountain-valley circulations and mountain-wave activities on atmospheric CO2 distributions are reproduced remarkably well in the high-resolution models. With this study, we emphasize the potential of using high-resolution models in the context of inverse modeling frameworks to utilize measurements provided from mountain or complex terrain sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据