4.7 Article

Constraining a global ecosystem model with multi-site eddy-covariance data

期刊

BIOGEOSCIENCES
卷 9, 期 10, 页码 3757-3776

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-9-3757-2012

关键词

-

资金

  1. CARBONES project, within the EU's 7th Framework Program for Research and Development
  2. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)
  3. NOAA's Climate Program Office (Global Carbon Cycle Program) [NA11OAR4310054]
  4. USDA Forest Service for measurements at US-Bar site

向作者/读者索取更多资源

Assimilation of in situ and satellite data in mechanistic terrestrial ecosystem models helps to constrain critical model parameters and reduce uncertainties in the simulated energy, water and carbon fluxes. So far the assimilation of eddy covariance measurements from flux-tower sites has been conducted mostly for individual sites (single-site optimization). Here we develop a variational data assimilation system to optimize 21 parameters of the ORCHIDEE biogeochemical model, using net CO2 flux (NEE) and latent heat flux (LE) measurements from 12 temperate deciduous broadleaf forest sites. We assess the potential of the model to simulate, with a single set of inverted parameters, the carbon and water fluxes at these 12 sites. We compare the fluxes obtained from this multi-site (MS) optimization to those of the prior model, and of the single-site (SS) optimizations. The model-data fit analysis shows that the MS approach decreases the daily root-mean-square difference (RMS) to observed data by 22%, which is close to the SS optimizations (25% on average). We also show that the MS approach distinctively improves the simulation of the ecosystem respiration (Reco), and to a lesser extent the gross primary productivity (GPP), although we only assimilated net CO2 flux. A process-oriented parameter analysis indicates that the MS inversion system finds a unique combination of parameters which is not the simple average of the different SS sets of parameters. Finally, in an attempt to validate the optimized model against independent data, we observe that global-scale simulations with MS optimized parameters show an enhanced phase agreement between modeled leaf area index (LAI) and satellite-based observations of normalized difference vegetation index (NDVI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据