4.6 Article

Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture

期刊

BMC PUBLIC HEALTH
卷 11, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2458-11-S1-S10

关键词

-

资金

  1. Canadian Institutes for Health Research [86937]
  2. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Background: For a typical influenza infection in vivo, viral titers over time are characterized by 1-2 days of exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range of mathematical models which makes model selection and the extraction of biologically-relevant infection parameters from experimental data difficult. Results: We analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of ordinary differential equation models which implicitly utilize exponential distributions and delay-differential equation models with fixed-length delays. Conclusions: By fitting published viral titer data from challenge experiments in human volunteers, we show that alternative models can lead to different estimates of the key infection parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据