4.7 Article

How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?

期刊

BIOGEOSCIENCES
卷 9, 期 5, 页码 1777-1795

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-9-1777-2012

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2009CB421204, 2009CB421201]
  2. Natural Science Foundation of China (NSFC) [90711005, 41121091, 41130857]
  3. U.S. National Science Foundation [OCE-0751525]
  4. SCOPE

向作者/读者索取更多资源

In order to assess the role of submarine groundwater discharge (SGD) and its impact on the carbonate system on the northern South China Sea (NSCS) shelf, we measured seawater concentrations of four radium isotopes Ra-223,Ra-224,Ra-226,Ra-228 along with carbonate system parameters in June-July, 2008. Complementary groundwater sampling was conducted in coastal areas in December 2008 and October 2010 to constrain the groundwater end-members. The distribution of Ra isotopes in the NSCS was largely controlled by the Pearl River plume and coastal upwelling. Long-lived Ra isotopes (Ra-228 and Ra-226) were enriched in the river plume but low in the offshore surface water and subsurface water/upwelling zone. In contrast, short-lived Ra isotopes (Ra-224 and Ra-223) were elevated in the subsurface water/ upwelling zone as well as in the river plume but depleted in the offshore surface water. In order to quantify SGD, we adopted two independent mathematical approaches. Using a three end-member mixing model with total alkalinity (TAlk) and Ra isotopes, we derived a SGD flux into the NSCS shelf of 2.3-3.7 x 10(8) m(3) day(-1). Our second approach involved a simple mass balance of Ra-228 and Ra-226 and resulted in a first order but consistent SGD flux estimate of 2.2-3.7 x 10(8) m(3) day(-1). These fluxes were equivalent to 12-21% of the Pearl River discharge, but the source of the SGD was mostly recirculated seawater. Despite the relatively small SGD volume flow compared to the river, the associated material fluxes were substantial given their elevated concentrations of dissolved inorganic solutes. In this case, dissolved inorganic carbon (DIC) flux through SGD was 153-347 x 10(9) mol yr(-1), or similar to 23-53% of the riverine DIC export flux. Our estimates of the groundwater-derived phosphate flux ranged 3-68 x 10(7) mol yr-1, which may be responsible for new production on the shelf up to 0.3-6.3 mmol Cm-2 d(-1). This rate of new production would at most consume 11% of the DIC contribution delivered by SGD. Hence, SGD may play an important role in the carbon balance over the NSCS shelf.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据