4.5 Article

Pea DNA helicase 45 promotes salinity stress tolerance in IR64 rice with improved yield

期刊

PLANT SIGNALING & BEHAVIOR
卷 7, 期 8, 页码 1042-1046

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.20915

关键词

abiotic stress; DNA and RNA helicase; GM crop; PDH45; rice; salinity stress; transgenics

资金

  1. Department of Biotechnology (DBT), Government of India

向作者/读者索取更多资源

The helicases provide duplex unwinding function in an ATP-dependent manner and thereby play important role in almost all the nucleic acids transaction. Since stress reduces the protein synthesis by affecting the cellular gene expression machinery, so it is evident that molecules involved in nucleic acid processing including translation factors/helicases are likely to be affected. Earlier pea DNA helicase 45 (PDH45), a homolog of translation initiation factor 4A (eIF4A) was reported to play important role in salinity stress tolerance in tobacco and Bangladeshi rice variety Binnatoa. We report here the overexpression of PDH45 gene in the indica rice variety IR64, via Agrobacterium-mediated transformation. Molecular analysis of the transgenics revealed stable integration of the transgene in the T1 generation. Enhanced tolerance to salinity was observed in the plants transformed with PDH45 gene. Better physiological and yield performances including endogenous nutrient contents (N, P, K, Na) of the transgenics under salt treatment were observed as compared with wild type (WT), vector control and antisense transgenics. All these results indicated that the overexpression of PDH45 in the IR64 rice transgenics enable them to perform better with enhanced salinity stress tolerance and improved physiological traits. Based on the homology of PDH45 protein with eIF4A protein we suggest that it may act at the translational level to enhance or stabilize protein synthesis under stress conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据