4.7 Article

Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

期刊

BMC PLANT BIOLOGY
卷 12, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2229-12-159

关键词

Antimicrobial peptide AMP; BP100; Transgenic rice; Oryza sativa; Hostplant fitness; Pathogen-resistant rice

资金

  1. Spanish Ministerio de Ciencia e Innovacion [AGL2010-17181/AGR, PLANT-KBBE EUI2008-03769]
  2. Generalitat de Catalunya [SGR-2009-12]
  3. Fundacion Ramon Areces

向作者/读者索取更多资源

Background: The Biopeptide BP100 is a synthetic and strongly cationic a-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results: Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptll) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions: Constitutive expression of transgenes encoding short cationic alpha-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据