4.7 Article

Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration

期刊

BMC PLANT BIOLOGY
卷 11, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2229-11-55

关键词

-

资金

  1. National Natural Science Foundation of China [30921002]
  2. Hubei Provincial Natural Science Foundation [2009CDA080]
  3. Fok Ying Tong Education Foundation [114034]
  4. Fundamental Research Funds for the Central Universities [2009PY016]
  5. Special Fund for Agro-scientific Research in the Public Interest [201003067]
  6. Grants-in-Aid for Scientific Research [21380028] Funding Source: KAKEN

向作者/读者索取更多资源

Background: Enormous work has shown that polyamines are involved in a variety of physiological processes, but information is scarce on the potential of modifying disease response through genetic transformation of a polyamine biosynthetic gene. Results: In the present work, an apple spermidine synthase gene (MdSPDS1) was introduced into sweet orange (Citrus sinensis Osbeck 'Anliucheng') via Agrobacterium-mediated transformation of embryogenic calluses. Two transgenic lines (TG4 and TG9) varied in the transgene expression and cellular endogenous polyamine contents. Pinprick inoculation demonstrated that the transgenic lines were less susceptible to Xanthomonas axonopodis pv. citri (Xac), the causal agent of citrus canker, than the wild type plants (WT). In addition, our data showed that upon Xac attack TG9 had significantly higher free spermine (Spm) and polyamine oxidase (PAO) activity when compared with the WT, concurrent with an apparent hypersensitive response and the accumulation of more H2O2. Pretreatment of TG9 leaves with guazatine acetate, an inhibitor of PAO, repressed PAO activity and reduced H2O2 accumulation, leading to more conspicuous disease symptoms than the controls when both were challenged with Xac. Moreover, mRNA levels of most of the defense-related genes involved in synthesis of pathogenesis-related protein and jasmonic acid were upregulated in TG9 than in the WT regardless of Xac infection. Conclusion: Our results demonstrated that overexpression of the MdSPDS1 gene prominently lowered the sensitivity of the transgenic plants to canker. This may be, at least partially, correlated with the generation of more H2O2 due to increased production of polyamines and enhanced PAO-mediated catabolism, triggering hypersensitive response or activation of defense-related genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据