4.4 Article

On the Half-Cauchy Prior for a Global Scale Parameter

期刊

BAYESIAN ANALYSIS
卷 7, 期 4, 页码 887-901

出版社

INT SOC BAYESIAN ANALYSIS
DOI: 10.1214/12-BA730

关键词

hierarchical models; normal scale mixtures; shrinkage

向作者/读者索取更多资源

This paper argues that the half-Cauchy distribution should replace the inverse-Gamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the case made by Gelman (2006) in support of folded-t priors. First, we generalize the half-Cauchy prior to the wider class of hypergeometric inverted-beta priors. We derive expressions for posterior moments and marginal densities when these priors are used for a top-level normal variance in a Bayesian hierarchical model. We go on to prove a proposition that, together with the results for moments and marginals, allows us to characterize the frequentist risk of the Bayes estimators under all global-shrinkage priors in the class. These results, in turn, allow us to study the frequentist properties of the half-Cauchy prior versus a wide class of alternatives. The half-Cauchy occupies a sensible middle ground within this class: it performs well near the origin, but does not lead to drastic compromises in other parts of the parameter space. This provides an alternative, classical justification for the routine use of this prior. We also consider situations where the underlying mean vector is sparse, where we argue that the usual conjugate choice of an inverse-gamma prior is particularly inappropriate, and can severely distort inference. Finally, we summarize some open issues in the specification of default priors for scale terms in hierarchical models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据