4.5 Article

Pilot study of a model-based approach to blood glucose control in very-low-birthweight neonates

期刊

BMC PEDIATRICS
卷 12, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2431-12-117

关键词

Hyperglycemia; Premature birth; Insulin; Control; Insulin sensitivity

资金

  1. Foundation for Research in Science and Technology, New Zealand

向作者/读者索取更多资源

Background: Hyperglycemia often occurs in premature, very low birthweight infants (VLBW) due to immaturity of endogenous regulatory systems and the stress of their condition. Hyperglycemia in neonates has been linked to increased morbidities and mortality and occurs at increasing rates with decreasing birthweight. In this cohort, the emerging use of insulin to manage hyperglycemia has carried a significant risk of hypoglycemia. The efficacy of blood glucose control using a computer metabolic system model to determine insulin infusion rates was assessed in very-low-birth-weight infants. Methods: Initial short-term 24-hour trials were performed on 8 VLBW infants with hyperglycemia followed by long-term trials of several days performed on 22 infants. Median birthweight was 745 g and 760 g for short-term and long-term trial infants, and median gestational age at birth was 25.6 and 25.4 weeks respectively. Blood glucose control is compared to 21 retrospective patients from the same unit who received insulin infusions determined by sliding scales and clinician intuition. This study was approved by the Upper South A Regional Ethics Committee, New Zealand (ClinicalTrials.gov registration NCT01419873). Results: Reduction in hyperglycemia towards the target glucose band was achieved safely in all cases during the short-term trials with no hypoglycemic episodes. Lower median blood glucose concentration was achieved during clinical implementation at 6.6 mmol/L (IQR: 5.5 - 8.2 mmol/L, 1,003 measurements), compared to 8.0 mmol/L achieved in similar infants previously (p < 0.01). No significant difference in incidence of hypoglycemia during long-term trials was observed (0.25% vs 0.25%, p = 0.51). Percentage of blood glucose within the 4.0 - 8.0 mmol/L range was increased by 41% compared to the retrospective cohort (68.4% vs 48.4%, p < 0.01). Conclusions: A computer model that accurately captures the dynamics of neonatal metabolism can provide safe and effective blood glucose control without increasing hypoglycemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据