4.7 Article

Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 12, 期 7, 页码 3147-3163

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-12-3147-2012

关键词

-

资金

  1. Environment Canada through Clean Air Regulatory Agenda (CARA)
  2. Environment Canada [GC 1004966, GC 1004953, GC 1004932]
  3. Whistler-Blackcomb
  4. Canadian Foundation for Climate and Atmospheric Science (CFCAS)

向作者/读者索取更多资源

The Whistler Aerosol and Cloud Study (WACS 2010), included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6-11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from < 1 mu g m(-3) to similar to 6 mu g m(-3). Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6-11 July, the anthropogenic influence was minimal with sulfate concentrations < 0.2 mu g m(-3) and SO2 mixing ratios approximate to 0.05-0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO2 mixing ratios were relatively low, box-model simulations show that nucleation and growth may be modeled accurately if J(nuc) = 3 x 10(-7)[H2SO4] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2-5 nm h(-1)) with a 10-25% probability of growing to CCN sizes (100 nm) in the first two days as opposed to being scavenged by coagulation with larger particles. The nucleated particles were observed to grow to similar to 200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (kappa) was similar to 0.1 for particles larger 150 nm, but for smaller particles near 100 nm the kappa value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO2, the rapid growth rates of the regionally nucleated particles - due to condensation of biogenic SOA - results in an unusually high efficiency of conversion of the nucleated particles to CCN. Consequently, despite the low SO2, nucleation/growth appear to be the dominant source of particle number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据