4.5 Article

Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein ZmNIP1;1 and leads to the discovery of a novel aquaporin ZmPIP2;8

期刊

PLANT SIGNALING & BEHAVIOR
卷 8, 期 8, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.24937

关键词

aquaporin; corn rootworm; Diabrotica; herbivory; maize; root

向作者/读者索取更多资源

Aquaporins channel water and other neutral molecules through cell membranes. Aquaporin gene expression is subject to transcriptional control and can be modulated by factors affecting water balance such as salt, abscisic acid and drought. During infestation of maize by southern corn rootworm (SCR), an insect that chews into and significantly damages maize roots, three maize aquaporins were differentially expressed upon prolonged infestation. Using a brief infestation of maize roots ZmNIP1;1 transcript abundance again increased under infestation while expression of a new aquaporin, ZmPIP2;8 and ZmTIP2;2 expression did not change. Since ZmPIP2;8 has not been described previously, the deduced protein sequence was analyzed in silico and found to contain the hallmarks of plant aquaporins, with a predicted protein structure similar to other functionally characterized PIP2s. NIPs characterized to date have been implicated in facilitating the movement of a variety of small molecules, while TIPs and PIPs often have the capacity to facilitate trans-membrane movement of water. Functional assays (using heterologous expression in Xenopus laevis oocytes) of ZmTIP2;2 and ZmPIP2;8 confirmed that these aquaporins demonstrate water channel capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据