4.6 Article

Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry

期刊

BMC MICROBIOLOGY
卷 13, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2180-13-187

关键词

Chebulagic acid; Punicalagin; Tannin; Broad-spectrum antivirals; Viral entry; Glycosaminoglycans

资金

  1. IWK Health Centre Postdoctoral Fellowship
  2. McCarlie Postdoctoral Award
  3. Taipei Medical University [TMU101-AE1-B12]
  4. National Science Council of Taiwan [NSC 98-2313-B-037-003-MY3]
  5. Canadian Institutes of Health [CIHR-MOP-10638, CIHR-MOP-114949]

向作者/读者索取更多资源

Background: We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. Results: Extensive analysis of the tannins' mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at mu M concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. Conclusions: CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据