4.6 Article

Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability

期刊

BMC MICROBIOLOGY
卷 13, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2180-13-241

关键词

Spaceflight; Microgravity; Pseudomonas aeruginosa; Flow cytometry; Motility

资金

  1. BioServe Space Technologies
  2. NASA-Ames Research Center [NNX09AI70G]
  3. NASA [NNX09AI70G, 115417] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Background: Abundant populations of bacteria have been observed on Mir and the International Space Station. While some experiments have shown that bacteria cultured during spaceflight exhibit a range of potentially troublesome characteristics, including increases in growth, antibiotic resistance and virulence, other studies have shown minimal differences when cells were cultured during spaceflight or on Earth. Although the final cell density of bacteria grown during spaceflight has been reported for several species, we are not yet able to predict how different microorganisms will respond to the microgravity environment. In order to build our understanding of how spaceflight affects bacterial final cell densities, additional studies are needed to determine whether the observed differences are due to varied methods, experimental conditions, or organism specific responses. Results: Here, we have explored how phosphate concentration, carbon source, oxygen availability, and motility affect the growth of Pseudomonas aeruginosa in modified artificial urine media during spaceflight. We observed that P. aeruginosa grown during spaceflight exhibited increased final cell density relative to normal gravity controls when low concentrations of phosphate in the media were combined with decreased oxygen availability. In contrast, when the availability of either phosphate or oxygen was increased, no difference in final cell density was observed between spaceflight and normal gravity. Because motility has been suggested to affect how microbes respond to microgravity, we compared the growth of wild-type P. aeruginosa to a Delta motABCD mutant deficient in swimming motility. However, the final cell densities observed with the motility mutant were consistent with those observed with wild type for all conditions tested. Conclusions: These results indicate that differences in bacterial final cell densities observed between spaceflight and normal gravity are due to an interplay between microgravity conditions and the availability of substrates essential for growth. Further, our results suggest that microbes grown under nutrient-limiting conditions are likely to reach higher cell densities under microgravity conditions than they would on Earth. Considering that the majority of bacteria inhabiting spacecrafts and space stations are likely to live under nutrient limitations, our findings highlight the need to explore the impact microgravity and other aspects of the spaceflight environment have on microbial growth and physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据