4.8 Article

Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 3, 页码 2073-2081

出版社

AMER CHEMICAL SOC
DOI: 10.1021/am508111r

关键词

solid electrolyte; interface; lithium metal; solid state battery; heterostructures

资金

  1. Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. Materials Project Center (BES DOE Grant EDCBEE)

向作者/读者索取更多资源

Cubic garnet phases based on Al-substituted Li7La3Zr2O12 (LLZO) have high ionic conductivities and exhibit good stability versus metallic lithium, making them of particular interest for use in next-generation rechargeable battery systems. However, high interfacial impedances have precluded their successful utilization in such devices until the present. Careful engineering of the surface microstructure, especially the grain boundaries, is critical to achieving low interfacial resistances and enabling long-term stable cycling with lithium metal. This study presents the fabrication of LLZO heterostructured solid electrolytes, which allowed direct correlation of surface microstructure with the electrochemical characteristics of the interface. Grain orientations and grain boundary distributions of samples with differing microstructures were mapped using high-resolution synchrotron polychromatic X-ray Laue microdiffraction. The electrochemical characteristics are strongly dependent upon surface microstructure, with small grained samples exhibiting much lower interfacial resistances and better cycling behavior than those with larger grain sizes. Low area specific resistances of 37 Omega cm(2) were achieved; low enough to ensure stable cycling with minimal polarization losses, thus removing a significant obstacle toward practical implementation of solid electrolytes in high energy density batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据