4.7 Article

An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies

期刊

BMC GENOMICS
卷 15, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2164-15-1103

关键词

Genome evolution; Ostreococcus touri; Domestication of microalgae; Illumina re-sequencing; Plant glutamate receptor; Correctness of short reads assembly; Picoeukaryote

资金

  1. European Community's 7th Framework program FP7 [254619]
  2. Ghent University
  3. Defi MASTODONS SePhHaDe CNRS
  4. LabeX NUMev
  5. Project Investissements d'Avenir France Genomique
  6. Nice-Sophia University
  7. [ANR-12-BSV7-0006-01]

向作者/读者索取更多资源

Background: Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired end reads from Ustreococcus touri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. Results: The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq II lumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate receptor like gene. Conclusion: High coverage (>80 fold) paired end Illumina sequencing enables a high quality 95% complete genome assembly of a compact 13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据