4.7 Article

Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications

期刊

BMC GENOMICS
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-15-1080

关键词

Wheat genome; Chromosome sorting; Triticum aestivum; Genome zipper; Triticeae genome; Chromosome arm shotgun; Comparative grass genomics

资金

  1. TUBITAK-BIDEB scholarship
  2. TUBITAK [111O665]
  3. Sabanci University Internal Grant
  4. Czech Science Foundation [P501/12/G090]
  5. Ministry of Education, Youth and Sports of the Czech Republic
  6. European Regional Development Fund (Operational Programme Research and Development for Innovations) [ED0007/01/01]

向作者/读者索取更多资源

Background: The similar to 17 Gb hexaploid bread wheat genome is a high priority and a major technical challenge for genomic studies. In particular, the D sub-genome is relatively lacking in genetic diversity, making it both difficult to map genetically, and a target for introgression of agriculturally useful traits. Elucidating its sequence and structure will therefore facilitate wheat breeding and crop improvement. Results: We generated shotgun sequences from each arm of flow-sorted Triticum aestivum chromosome 5D using 454 FLX Titanium technology, giving 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. By a combination of sequence similarity and assembly-based methods, similar to 74% of the sequence reads were classified as repetitive elements, and coding sequence models of 1314 (5DS) and 2975 (5DL) genes were generated. The order of conserved genes in syntenic regions of previously sequenced grass genomes were integrated with physical and genetic map positions of 518 wheat markers to establish a virtual gene order for chromosome 5D. Conclusions: The virtual gene order revealed a large-scale chromosomal rearrangement in the peri-centromeric region of 5DL, and a concentration of non-syntenic genes in the telomeric region of 5DS. Although our data support the large-scale conservation of Triticeae chromosome structure, they also suggest that some regions are evolving rapidly through frequent gene duplications and translocations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据