4.7 Article

A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes

期刊

BMC GENOMICS
卷 15, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-15-212

关键词

Nannochloropsis; Chloroplast; Mitochondria; Genome; Stramenopiles; Genome evolution; Gene divergence

资金

  1. US Department of Energy [DE-EE0003046]
  2. US National Science Foundation [0523756, 0629521]
  3. US Defense Threat Reduction Agency (DTRA) [CBCALL12-LS6-1-0622]
  4. Los Alamos National Laboratory
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [0629521] Funding Source: National Science Foundation
  7. Emerging Frontiers
  8. Direct For Biological Sciences [0523756] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background: Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results: The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions: Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据