4.7 Article

Transcriptome-scale homoeolog-specific transcript assemblies of bread wheat

期刊

BMC GENOMICS
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2164-13-492

关键词

Wheat transcriptome; Wheat genes; Sequence assembly; Cloud computing

资金

  1. Australian Research Council, Grains Research and Development Corporation, Government of South Australia
  2. University of Adelaide

向作者/读者索取更多资源

Background: Bread wheat is one of the world's most important food crops and considerable efforts have been made to develop genomic resources for this species. This includes an on-going project by the International Wheat Genome Sequencing Consortium to assemble its large and complex genome, which is hexaploid and contains three closely related 'homoeologous' copies for each chromosome. This multi-national effort avoids the complications polyploidy entails for correct assembly of the genome by sequencing flow-sorted chromosome arms one at a time. Here we report on an alternate approach, a direct homoeolog-specific assembly of the expressed portion of the genome, the transcriptome. Results: After assessment of the ability of various assemblers to generate homoeolog-specific assemblies, we employed a two-stage assembly process to produce a high-quality assembly of the transcriptome of hexaploid wheat from Roche-454 and Illumina GAII(x) paired-end sequence reads. The assembly process made use of a rapid partitioning of expressed sequences into homoeologous clusters, followed by a parallel high-fidelity assembly of each cluster on a 1150-processor compute cloud. We assessed assembly quality through comparison to known wheat gene sequences and found that in ca. 98.5% of cases the assembly was sufficiently accurate for homoeologous triplets to be cleanly separated into either two or three separate contigs. Comparison to publicly available transcript collections suggests that the assembly covers similar to 75-80% of the complete transcriptome. Conclusions: This work therefore describes the first homoeolog-specific sequence assembly of the wheat transcriptome and provides a reference transcriptome for future wheat research. Furthermore, our assembly methodology is transferable to other polyploid organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据