4.8 Article

Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source

期刊

NATURE PHOTONICS
卷 8, 期 1, 页码 29-32

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHOTON.2013.314

关键词

-

资金

  1. US Department of Energy [DE-FG02-05ER15663]
  2. Defense Threat Reduction Agency [HDTRA1-11-C-0001]
  3. Air Force Office for Scientific Research [FA 9550-08-1-0232, FA9550-11-1-0157]
  4. Department of Homeland Security [2007-DN-077-ER0007-02]
  5. Defense Advanced Research Projects Agency [FA9550-09-1-0009]
  6. USSTRATCOM [FA4600-12-D-9000]

向作者/读者索取更多资源

The maximum achievable photon energy of compact, conventional, Compton-scattering X-ray sources is currently limited by the maximum permissible field gradient of conventional electron accelerators(1,2). An alternative compact Compton X-ray source architecture with no such limitation is based instead on a high-field-gradient laser-wakefield accelerator(3-6). In this case, a single high-power (100 TW) laser system generates intense laser pulses, which are used for both electron acceleration and scattering. Although such all-laser-based sources have been demonstrated to be bright and energetic in proof-of-principle experiments(7-10), to date they have lacked several important distinguishing characteristics of conventional Compton sources. We now report the experimental demonstration of all-laser-driven Compton X-rays that are both quasi-monoenergetic (similar to 50% full-width at half-maximum) and tunable (similar to 70 keV to >1 MeV). These performance improvements are highly beneficial for several important X-ray radiological applications(2,11-15).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据