4.5 Article

Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis

期刊

CLIMATE OF THE PAST
卷 10, 期 2, 页码 607-622

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-10-607-2014

关键词

-

资金

  1. University of Bristol Centenary Scholarship
  2. Natural Environment Research Council [NE/J012726/1] Funding Source: researchfish
  3. NERC [NE/J012726/1] Funding Source: UKRI

向作者/读者索取更多资源

Late Miocene tectonic changes in Mediterranean-Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a tenfold increase and near-freshening. Recent proxy-and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean-atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid-high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland-Iceland-Norwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35 degrees N by 1.5-6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly -1 to -3 degrees C, but up to -8 degrees C) and weaker warming in the south (up to +0.5 to +2.7 degrees C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean-Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据