3.8 Article

Strain rate sensitivity and mechanical anisotropy of selective laser melted 17-4 PH stainless steel

期刊

MECHANICAL ENGINEERING JOURNAL
卷 1, 期 5, 页码 -

出版社

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/mej.2014smm0049

关键词

Additive manufacturing; Selective laser melting; Split-Hopkinson bar; 17-4 PH; Stainless steel

向作者/读者索取更多资源

Quasi-static and dynamic tensile testing was performed upon machined tensile specimens fabricated from bulk primitives produced by the consolidation of water atomized, 17-4 precipitation hardened stainless steel powder by layer-based, selective laser melting. Such mechanical evaluation was performed by a screw-driven uniaxial tension testing machine and a split-Hopkinson tensile bar apparatus. Strain rates evaluated include 10(-3), 10(-1) and 10(3) s(-1). Prior to tensile testing, specimens underwent additional thermal processing in accordance with industry standards. Evaluations of the solution heat treatment and peak-age conditions were made alongside similarly prepared, but traditionally processed specimens meeting the same material standard for chemistry (drawn rod). Tensile strength across all strain rates is higher for these selective laser melted (SLM) specimens as a result of microstructure refinement through rapid melt, solidification and cooling during processing. Ultimate tensile and yield strengths increase with increasing strain rate and show no preferential direction relative to the building direction. Elongation anisotropy is observed as a consequence of directional porosity stemming from pores limited to within individual layers. Specimens loaded normal to the SLM building plane commonly rupture at small elongation because of this mechanical fibering from the selective laser melting process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据