4.4 Article

Assessing what is needed to resolve a molecular phylogeny: simulations and empirical data from emydid turtles

期刊

BMC EVOLUTIONARY BIOLOGY
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2148-9-56

关键词

-

资金

  1. NSF [DEB 0213155, DEB 0516475, DEB 0507916, DEB 0817042]
  2. NSF Doctoral Dissertation Improvement grant [DEB-0710380]
  3. UC Davis Center

向作者/读者索取更多资源

Background: Phylogenies often contain both well-supported and poorly supported nodes. Determining how much additional data might be required to eventually recover most or all nodes with high support is an important pragmatic goal, and simulations have been used to examine this question. Most simulations have been based on few empirical loci, and suggest that well supported phylogenies can be determined with a very modest amount of data. Here we report the results of an empirical phylogenetic analysis of all 10 genera and 25 of 48 species of the new world pond turtles (family Emydidae) based on one mitochondrial (1070 base pairs) and seven nuclear loci (5961 base pairs), and a more biologically realistic simulation analysis incorporating variation among gene trees, aimed at determining how much more data might be necessary to recover weakly-supported nodes with strong support. Results: Our mitochondrial-based phylogeny was well resolved, and congruent with some previous mitochondrial results. For example, all genera, and all species except Pseudemys concinna, P. peninsularis, and Terrapene carolina were monophyletic with strong support from at least one analytical method. The Emydinae was recovered as monophyletic, but the Deirochelyinae was not. Based on nuclear data, all genera were monophyletic with strong support except Trachemys, and all species except Graptemys pseudogeographica, P. concinna, T. carolina, and T. coahuila were monophyletic, generally with strong support. However, the branches subtending most genera were relatively short, and intergeneric relationships within subfamilies were mostly unsupported. Our simulations showed that relatively high bootstrap support values (i.e. >= 70) for all nodes were reached in all datasets, but an increase in data did not necessarily equate to an increase in support values. However, simulations based on a single empirical locus reached higher overall levels of support with less data than did the simulations that were based on all seven empirical nuclear loci, and symmetric tree distances were much lower for single versus multiple gene simulation analyses. Conclusion: Our empirical results provide new insights into the phylogenetics of the Emydidae, but the short branches recovered deep in the tree also indicate the need for additional work on this clade to recover all intergeneric relationships with confidence and to delimit species for some problematic groups. Our simulation results suggest that moderate (in the few-to-tens of kb range) amounts of data are necessary to recover most emydid relationships with high support values. They also suggest that previous simulations that do not incorporate among-gene tree topological variance probably underestimate the amount of data needed to recover well supported phylogenies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据