4.4 Article

Recurring cluster and operon assembly for Phenylacetate degradation genes

期刊

BMC EVOLUTIONARY BIOLOGY
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2148-9-36

关键词

-

资金

  1. Irish Research Council for Science, Engineering and Technology

向作者/读者索取更多资源

Background: A large number of theories have been advanced to explain why genes involved in the same biochemical processes are often co-located in genomes. Most of these theories have been dismissed because empirical data do not match the expectations of the models. In this work we test the hypothesis that cluster formation is most likely due to a selective pressure to gradually colocalise protein products and that operon formation is not an inevitable conclusion of the process. Results: We have selected an exemplar well-characterised biochemical pathway, the phenylacetate degradation pathway, and we show that its complex history is only compatible with a model where a selective advantage accrues from moving genes closer together. This selective pressure is likely to be reasonably weak and only twice in our dataset of 102 genomes do we see independent formation of a complete cluster containing all the catabolic genes in the pathway. Additionally, de novo clustering of genes clearly occurs repeatedly, even though recombination should result in the random dispersal of such genes in their respective genomes. Interspecies gene transfer has frequently replaced in situ copies of genes resulting in clusters that have similar content but very different evolutionary histories. Conclusion: Our model for cluster formation in prokaryotes, therefore, consists of a two-stage selection process. The first stage is selection to move genes closer together, either because of macromolecular crowding, chromatin relaxation or transcriptional regulation pressure. This proximity opportunity sets up a separate selection for co-transcription.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据