4.4 Article

Evidence of a chimeric genome in the cyanobacterial ancestor of plastids

期刊

BMC EVOLUTIONARY BIOLOGY
卷 8, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2148-8-117

关键词

-

资金

  1. Div Of Molecular and Cellular Bioscience
  2. Direct For Biological Sciences [0946528] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background: Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54-264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage. Results: Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus. Conclusion: Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据