4.4 Article

Evidence for panmixia despite barriers to gene flow in the southern African endemic, Caffrogobius caffer (Teleostei: Gobiidae)

期刊

BMC EVOLUTIONARY BIOLOGY
卷 8, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2148-8-325

关键词

-

资金

  1. NRF Freestanding Honours bursary
  2. SvdH by a NRF Prestigious Free-standing postdoctoral fellowship
  3. National Research Foundation (NRF) of South Africa [FA2005040400057]

向作者/读者索取更多资源

Background: Oceanography and life-history characteristics are known to influence the genetic structure of marine species, however the relative role that these factors play in shaping phylogeographic patterns remains unresolved. The population genetic structure of the endemic, rocky shore dwelling Caffrogobius caffer was investigated across a known major oceanographic barrier, Cape Agulhas, which has previously been shown to strongly influence genetic structuring of South African rocky shore and intertidal marine organisms. Given the variable and dynamic oceanographical features of the region, we further sought to test how the pattern of gene flow between C. caffer populations is affected by the dominant Agulhas and Benguela current systems of the southern oceans. Results: The variable 5' region of the mtDNA control region was amplified for 242 individuals from ten localities spanning the distributional range of C. caffer. Fifty-five haplotypes were recovered and in stark contrast to previous phylogeographic studies of South African marine species, C. caffer showed no significant population genetic structuring along 1300 km of coastline. The parsimony haplotype network, AMOVA and SAMOVA analyses revealed panmixia. Coalescent analyses reveal that gene flow in C. caffer is strongly asymmetrical and predominantly affected by the Agulhas Current. Notably, there was no gene flow between the east coast and all other populations, although all other analyses detect no significant population structure, suggesting a recent divergence. The mismatch distribution suggests that C. caffer underwent a population expansion at least 14 500 years ago. Conclusion: We propose several possible life-history adaptations that could have enabled C. caffer to maintain gene flow across its distributional range, including a long pelagic larval stage. We have shown that life-history characteristics can be an important contributing factor to the phylogeography of marine species and that the effects of oceanography do not necessarily suppress its influence on effective dispersal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据