3.9 Article

Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum

期刊

BMC DEVELOPMENTAL BIOLOGY
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-213X-10-60

关键词

-

资金

  1. Mochida Memorial Foundation for Medical and Pharmaceutical Research
  2. John D. Lewis Foundation
  3. Sophia Wolf Quadracci Memorial Fund
  4. Dr. James Guhl Memorial Fund

向作者/读者索取更多资源

Background: To maintain pluripotency of human embryonic stem (huES) cells in feeder-free culture it has been necessary to provide a Matrigel substratum, which is a complex of poorly defined extracellular matrices and growth factors derived from mouse Engelbreth-Holm-Swarm sarcoma cells. Culture of stem cells under ill-defined conditions can inhibit the effectiveness of maintaining cells in a pluripotent state and reduce reproducibility of differentiation protocols. Moreover recent batches of Matrigel have been found to be contaminated with the single stranded RNA virus, Lactate Dehydrogenase Elevating Virus (LDEV), raising concerns regarding the safety of using stem cells that have been cultured on Matrigel in a therapeutic setting. To circumvent such concerns, we attempted to identify a recombinant matrix that could be used as an alternative to Matrigel for the culture of human pluripotent stem cells. huES and human induced pluripotent stem (hiPS) cells were grown on plates coated with a fusion protein consisting of E-cadherin and the IgG Fc domain using mTeSR1 medium. Results: Cells grown under these conditions maintained similar morphology and growth rate to those grown on Matrigel and retained all pluripotent stem cell features, including an ability to differentiate into multiple cell lineages in teratoma assays. We, therefore, present a culture system that maintains the pluripotency of huES and hiPS cells under completely defined conditions. Conclusions: We propose that this system should facilitate growth of stem cells using good manufacturing practices (GMP), which will be necessary for the clinical use of pluripotent stem cells and their derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据