4.0 Article

Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis

期刊

BMC CELL BIOLOGY
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2121-10-64

关键词

-

资金

  1. Samuel Waxman Cancer Research Foundation
  2. NIH/National Cancer Institute [CA109182, CA119018]
  3. New York State Stem Cell Science (NYSTEM)

向作者/读者索取更多资源

Background: The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in similar to 30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2 alpha inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2 alpha can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2 alpha phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. Results: We tested whether ErbB2 signaling influenced eIF2 alpha signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wildtype (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2 alpha signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2 alpha or induction of its downstream target ATF4. However, inhibition of eIF2 alpha dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2-as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt- ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA- ErbB2 cells. Conclusion: Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and eIF2 alpha phosphorylation. ErbB2 uncouples in basal conditions eIF2 alpha phosphorylation from CHOP induction. However, this signal was restored by salubrinal treatment in Wt-ErbB2 expressing MCF10A cells as these DCIS-like structures underwent luminal clearing. In CA-ErbB2 structures apoptosis is not induced by salubrinal and instead a state of quiescence with reduced proliferation was achieved. Treatments that stabilize P-eIF2 alpha levels may be effective in treating ErbB2 positive cancers without severely disrupting normal tissue function and structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据