4.0 Article

cAMP-dependent and cholinergic regulation of the electrogenic intestinal/pancreatic Na+/HCO3-cotransporter pNBC1 in human embryonic kidney (HEK293) cells

期刊

BMC CELL BIOLOGY
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2121-9-70

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [Ba 2114/5-1, Ba 2114/5-3]
  2. Lower Saxony ministry of science and culture
  3. DFG

向作者/读者索取更多资源

Background: The renal (kNBC1) and intestinal (pNBC1) electrogenic Na+/HCO3- cotransporter variants differ in their primary structure, transport direction, and response to secretagogues. Previous studies have suggested that regulatory differences between the two subtypes can be partially explained by unique consensus phosphorylation sites included in the pNBC1, but not the kNBC1 sequence. After having shown activation of NBC by carbachol and forskolin in murine colon, we now investigated these pathways in HEK293 cells transiently expressing a GFP-tagged pNBC1 construct. Results: Na+- and HCO3--dependent pH(i) recovery from an acid load (measured with BCECF) was enhanced by 5-fold in GFP-positive cells compared to the control cells in the presence of CO2/HCO3-. Forskolin (10(-5) M) had no effect in untransfected cells, but inhibited the pHi recovery in cells expressing pNBC1 by 62%. After preincubation with carbachol (10(-4) M), the pH(i) recovery was enhanced to the same degree both in transfected and untransfected cells, indicating activation of endogenous alkalizing ion transporters. Acid-activated Na+/HCO3- cotransport via pNBC1 expressed in renal cells is thus inhibited by cAMP and not affected by cholinergic stimulation, as opposed to the findings in native intestinal tissue. Conclusion: Regulation of pNBC1 by secretagogues appears to be not solely dependent on its primary structure, but also on properties of the cell type in which it is expressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据