4.6 Article

Systematic validation of predicted microRNAs for cyclin D1

期刊

BMC CANCER
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2407-9-194

关键词

-

类别

资金

  1. NCI and McElroy Foundation [CA102630]
  2. China Scholarship Counsel of Education Ministry, P. R. China

向作者/读者索取更多资源

Background: MicroRNAs are the endogenous small non-coding RNA molecules capable of silencing protein coding genes at the posttranscriptional level. Based on computer-aided predictions, a single microRNA could have over a hundred of targets. On the other hand, a single protein-coding gene could be targeted by many potential microRNAs. However, only a relatively small number of these predicted microRNA/mRNA interactions are experimentally validated, and no systematic validation has been carried out using a reporter system. Methods: In this study, we used luciferease reporter assays to validate microRNAs that can silence cyclin D1 (CCND1) because CCND1 is a well known proto-oncogene implicated in a variety of types of cancers. We chose miRanda http://www.microRNA.org as a primary prediction method. We then cloned 51 of 58 predicted microRNA precursors into pCDH-CMV-MCS-EF1-copGFP and tested for their effect on the luciferase reporter carrying the 3'-untranslated region (UTR) of CCND1 gene. Results: Real-time PCR revealed the 45 of 51 cloned microRNA precursors expressed a relatively high level of the exogenous microRNAs which were used in our validation experiments. By an arbitrary cutoff of 35% reduction, we identified 7 microRNAs that were able to suppress Luc-CCND1-UTR activity. Among them, 4 of them were previously validated targets and the rest 3 microRNAs were validated to be positive in this study. Of interest, we found that miR-503 not only suppressed the luciferase activity, but also suppressed the endogenous CCND1 both at protein and mRNA levels. Furthermore, we showed that miR-503 was able to reduce S phase cell populations and caused cell growth inhibition, suggesting that miR-503 may be a putative tumor suppressor. Conclusion: This study provides a more comprehensive picture of microRNA/CCND1 interactions and it further demonstrates the importance of experimental target validation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据