4.7 Article

The direct and indirect radiative effects of biogenic secondary organic aerosol

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 14, 期 1, 页码 447-470

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-14-447-2014

关键词

-

资金

  1. Natural Environment Research Council (NERC)
  2. NERC [NE/J004723/1, NE/G015015/1]
  3. Bert Bolin Climate Center
  4. CLEO Project
  5. Engineering and Physical Sciences Research Council (EPSRC) [EP/I014721/1]
  6. EC Seventh Framework Programme [FP7-ENV-2010-265148]
  7. Royal Society Wolfson Merit Award
  8. NERC National Centre for Atmospheric Science (NCAS)
  9. Academy of Finland Centre of Excellence (FCoE) programme [1118615]
  10. Swedish Environmental Agency (Naturvardsverket)
  11. Stockholm Environmental Protection Unit (Miljoforvaltningen)
  12. Engineering and Physical Sciences Research Council [EP/I014721/1] Funding Source: researchfish
  13. Natural Environment Research Council [NE/G015015/1, NE/J004723/1, ncas10006] Funding Source: researchfish
  14. EPSRC [EP/I014721/1] Funding Source: UKRI
  15. NERC [ncas10006] Funding Source: UKRI

向作者/读者索取更多资源

We use a global aerosol microphysics model in combination with an offline radiative transfer model to quantify the radiative effect of biogenic secondary organic aerosol (SOA) in the present-day atmosphere. Through its role in particle growth and ageing, the presence of biogenic SOA increases the global annual mean concentration of cloud condensation nuclei (CCN; at 0.2% supersaturation) by 3.6-21.1 %, depending upon the yield of SOA production from biogenic volatile organic compounds (BVOCs), and the nature and treatment of concurrent primary carbonaceous emissions. This increase in CCN causes a rise in global annual mean cloud droplet number concentration (CDNC) of 1.9-5.2 %, and a global mean first aerosol indirect effect (AIE) of between +0.01 W m(-2) and -0.12 W m(-2). The radiative impact of biogenic SOA is far greater when biogenic oxidation products also contribute to the very early stages of new particle formation; using two organically mediated mechanisms for new particle formation, we simulate global annual mean first AIEs of -0.22 W m(-2) and -0.77 W m(-2). The inclusion of biogenic SOA substantially improves the simulated seasonal cycle in the concentration of CCN-sized particles observed at three forested sites. The best correlation is found when the organically mediated nucleation mechanisms are applied, suggesting that the first AIE of biogenic SOA could be as large as -0.77 W m(-2). The radiative impact of SOA is sensitive to the presence of anthropogenic emissions. Lower background aerosol concentrations simulated with anthropogenic emissions from 1750 give rise to a greater fractional CCN increase and a more substantial first AIE from biogenic SOA. Consequently, the anthropogenic indirect radiative forcing between 1750 and the present day is sensitive to assumptions about the amount and role of biogenic SOA. We also calculate an annual global mean direct radiative effect of between -0.08 W m(-2) and -0.78 W m(-2) in the present day, with uncertainty in the amount of SOA produced from the oxidation of BVOCs accounting for most of this range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据