4.8 Article

Parkinson's disease-linked Parkin mutations impair glutamatergic signaling in hippocampal neurons

期刊

BMC BIOLOGY
卷 16, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12915-018-0567-7

关键词

Parkin; AMPAR; NMDAR; GluN1; Homer1; Parkinson's disease; Synapse

类别

资金

  1. NIH/NINDS [NS080967]
  2. Brain Research Foundation Fay/Frank Seed Grant

向作者/读者索取更多资源

Background: Parkinson's disease (PD)-associated E3 ubiquitin ligase Parkin is enriched at glutamatergic synapses, where it ubiquitinates multiple substrates, suggesting that its mutation/loss-of-function could contribute to the etiology of PD by disrupting excitatory neurotransmission. Here, we evaluate the impact of four common PD-associated Parkin point mutations (T240M, R275W, R334C, G430D) on glutamatergic synaptic function in hippocampal neurons. Results: We find that expression of these point mutants in cultured hippocampal neurons from Parkin-deficient and Parkin-null backgrounds alters NMDA and AMPA receptor-mediated currents and cell-surface levels and prevents the induction of long-term depression. Mechanistically, we demonstrate that Parkin regulates NMDA receptor trafficking through its ubiquitination of GluN1, and that all four mutants are impaired in this ubiquitinating activity. Furthermore, Parkin regulates synaptic AMPA receptor trafficking via its binding and retention of the postsynaptic scaffold Homer1, and all mutants are similarly impaired in this capacity. Conclusion: Our findings demonstrate that pathogenic Parkin mutations disrupt glutamatergic synaptic transmission in hippocampal neurons by impeding NMDA and AMPA receptor trafficking. Such effects may contribute to the pathophysiology of PD in PARK2 patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据