4.6 Article

Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior

期刊

BMC BIOINFORMATICS
卷 12, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-12-438

关键词

-

资金

  1. NIH/NCRR [P20 RR017696-05, P20RR017696, 5P20RR017677-10]
  2. NIH/NIGMS [R01GM063265-09S1, P20 RR017677-10, T32GM074934 07]
  3. PhRMA Foundation
  4. NLM [5-T15-LM007438-02]
  5. NIH/NCI [R03CA137805]
  6. NSF [DMS 0604666]

向作者/读者索取更多资源

Background: To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. Results: We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. Conclusions: CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray experiments. Availability: CDEP is implemented in R and freely available at: http://genomebioinfo.musc.edu/CDEP/ Contact: zhengw@musc.edu

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据