4.6 Article

Classifying short genomic fragments from novel lineages using composition and homology

期刊

BMC BIOINFORMATICS
卷 12, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-12-328

关键词

-

资金

  1. Killam Trusts
  2. Natural Sciences and Engineering Research Council of Canada
  3. Genome Atlantic
  4. Canada Foundation for Innovation
  5. Canada Research Chairs program
  6. Government of Canada through Genome Canada
  7. Ontario Genomics Institute [2009-OGI-ABC-1405]

向作者/读者索取更多资源

Background: The assignment of taxonomic attributions to DNA fragments recovered directly from the environment is a vital step in metagenomic data analysis. Assignments can be made using rank-specific classifiers, which assign reads to taxonomic labels from a predetermined level such as named species or strain, or rank-flexible classifiers, which choose an appropriate taxonomic rank for each sequence in a data set. The choice of rank typically depends on the optimal model for a given sequence and on the breadth of taxonomic groups seen in a set of close-to-optimal models. Homology-based (e.g., LCA) and composition-based (e. g., PhyloPythia, TACOA) rank-flexible classifiers have been proposed, but there is at present no hybrid approach that utilizes both homology and composition. Results: We first develop a hybrid, rank-specific classifier based on BLAST and Naive Bayes (NB) that has comparable accuracy and a faster running time than the current best approach, PhymmBL. By substituting LCA for BLAST or allowing the inclusion of suboptimal NB models, we obtain a rank-flexible classifier. This hybrid classifier outperforms established rank-flexible approaches on simulated metagenomic fragments of length 200 bp to 1000 bp and is able to assign taxonomic attributions to a subset of sequences with few misclassifications. We then demonstrate the performance of different classifiers on an enhanced biological phosphorous removal metagenome, illustrating the advantages of rank-flexible classifiers when representative genomes are absent from the set of reference genomes. Application to a glacier ice metagenome demonstrates that similar taxonomic profiles are obtained across a set of classifiers which are increasingly conservative in their classification. Conclusions: Our NB-based classification scheme is faster than the current best composition-based algorithm, Phymm, while providing equally accurate predictions. The rank-flexible variant of NB, which we term epsilon-NB, is complementary to LCA and can be combined with it to yield conservative prediction sets of very high confidence. The simple parameterization of LCA and epsilon-NB allows for tuning of the balance between more predictions and increased precision, allowing the user to account for the sensitivity of downstream analyses to misclassified or unclassified sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据