4.6 Article

FULLY COUPLED SIMULATION OF COSMIC REIONIZATION. I. NUMERICAL METHODS AND TESTS

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0067-0049/216/1/16

关键词

cosmology: theory; methods: numerical; radiative transfer

资金

  1. National Science Foundation [AST-0808184, AST-1109243]
  2. NSF [AST-1211626, AST-1333360]
  3. [AST025]
  4. [AST033]
  5. Direct For Mathematical & Physical Scien [1332858, 1333514, 1333360, 1109243] Funding Source: National Science Foundation
  6. Division Of Astronomical Sciences [1211626] Funding Source: National Science Foundation

向作者/读者索取更多资源

We describe an extension of the Enzo code to enable fully coupled radiation hydrodynamical simulation of inhomogeneous reionization in large similar to(100 Mpc)(3) cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. We do, however, employ a simple subgrid model for star formation which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. differing principally in the operator splitting algorithm we use to advance the system of equations. Radiation transport is done in the gray flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. We illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 3200(3) Eulerian grid cells and dark matter particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据