4.6 Article

uShuffle: A useful tool for shuffling biological sequences while preserving the k-let counts

期刊

BMC BIOINFORMATICS
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-9-192

关键词

-

资金

  1. Direct For Biological Sciences
  2. Div Of Biological Infrastructure [0743670] Funding Source: National Science Foundation

向作者/读者索取更多资源

Background: Randomly shuffled sequences are routinely used in sequence analysis to evaluate the statistical significance of a biological sequence. In many cases, biologists need sophisticated shuffling tools that preserve not only the counts of distinct letters but also higher-order statistics such as doublet counts, triplet counts, and, in general, k-let counts. Results: We present a sequence analysis tool ( named uShuffle) for generating uniform random permutations of biological sequences ( such as DNAs, RNAs, and proteins) that preserve the exact k-let counts. The uShuffle tool implements the latest variant of the Euler algorithm and uses Wilson's algorithm in the crucial step of arborescence generation. It is carefully engineered and extremely efficient. The uShuffle tool achieves maximum flexibility by allowing arbitrary alphabet size and let size. It can be used as a command-line program, a web application, or a utility library. Source code in C, Java, and C#, and integration instructions for Perl and Python are provided. Conclusion: The uShuffle tool surpasses existing implementation of the Euler algorithm in both performance and flexibility. It is a useful tool for the bioinformatics community.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据