4.6 Article

Mapping gene expression quantitative trait loci by singular value decomposition and independent component analysis

期刊

BMC BIOINFORMATICS
卷 9, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-9-244

关键词

-

资金

  1. NHGRI NIH HHS [R01 HG002913] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM078105] Funding Source: Medline

向作者/读者索取更多资源

Background: The combination of gene expression profiling with linkage analysis has become a powerful paradigm for mapping gene expression quantitative trait loci (eQTL). To date, most studies have searched for eQTL by analyzing gene expression traits one at a time. As thousands of expression traits are typically analyzed, this can reduce power because of the need to correct for the number of hypothesis tests performed. In addition, gene expression traits exhibit a complex correlation structure, which is ignored when analyzing traits individually. Results: To address these issues, we applied two different multivariate dimension reduction techniques, the Singular Value Decomposition (SVD) and Independent Component Analysis (ICA) to gene expression traits derived from a cross between two strains of Saccharomyces cerevisiae. Both methods decompose the data into a set of meta-traits, which are linear combinations of all the expression traits. The meta-traits were enriched for several Gene Ontology categories including metabolic pathways, stress response, RNA processing, ion transport, retro-transposition and telomeric maintenance. Genome-wide linkage analysis was performed on the top 20 meta-traits from both techniques. In total, 21 eQTL were found, of which 11 are novel. Interestingly, both cis and trans-linkages to the meta-traits were observed. Conclusion: These results demonstrate that dimension reduction methods are a useful and complementary approach for probing the genetic architecture of gene expression variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据