3.8 Article

NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures

期刊

MECHANICAL ENGINEERING JOURNAL
卷 2, 期 1, 页码 -

出版社

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/mej.14-00402

关键词

Combustion; Laminar flames; Ammonia; Nitrogen oxide; Equivalence ratio; High pressure

资金

  1. Cross-ministerial Strategic Innovation Promotion Program (SIP) of the Japan Science and Technology Agency (JST)

向作者/读者索取更多资源

Ammonia is a carbon-free fuel and its application to internal combustion engines is expected. However, few studies on ammonia flames, especially at high pressures, have been carried out because ammonia has not been considered to be a fuel owing to its lower combustion intensity. Most of NOx, which is formed by ammonia combustion, is considered to be the fuel NOx. The objectives of this study were to investigate the fundamental characteristics of NOx experimentally, such as NO emission and chemiluminescence of ammonia/air flames not only at the atmospheric pressure but also under high pressures and to explore NO formation/reduction mechanisms using numerical simulation. Experiments were carried out using a nozzle-type burner. NH2 ammonia a. band spectra were observed, and it was clarified that the color of ammonia flame is mainly determined by the NH2 ammonia a. band and H2O spectra. Burned gas was sampled from ammonia flame stabilized at the burner. The mole fraction of NO decreased with the increase in equivalence ratio at atmospheric pressure. Reaction flow analysis was performed, and it was clarified that the decrease in the mole fraction of NO for rich mixtures was caused by NHi, (i = 2, 1, 0). High pressure experiments were performed using a high pressure combustion test facility for stoichiometric ammonia flame. Consequently, the decrease in the mole fraction of NO was experimentally observed and its tendency was found to qualitatively agree with the results of the numerical simulation. It was clarified that the third body reaction of OH + H + M double left right arrow> H2O + M plays an important role in the reduction of the mole fraction of NO at high pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据