3.9 Article

A highly conserved arginine residue of the chitosanase from Streptomyces sp N174 is involved both in catalysis and substrate binding

期刊

BMC BIOCHEMISTRY
卷 14, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2091-14-23

关键词

Chitosanase; Glycoside hydrolase family GH46; Substrate inhibition; Inverting mechanism; Enzyme-substrate interaction; Arginine

资金

  1. Natural Science and Engineering Research Council of Canada
  2. Fonds Quebecois de la Recherche sur la Nature et les Technologies
  3. MEXT Japan

向作者/读者索取更多资源

Background: Streptomyces sp. N174 chitosanase (CsnN174), a member of glycoside hydrolases family 46, is one of the most extensively studied chitosanases. Previous studies allowed identifying several key residues of this inverting enzyme, such as the two catalytic carboxylic amino acids as well as residues that are involved in substrate binding. In spite of the progress in understanding the catalytic mechanism of this chitosanase, the function of some residues highly conserved throughout GH46 family has not been fully elucidated. This study focuses on one of such residues, the arginine 42. Results: Mutation of Arg42 into any other amino acid resulted in a drastic loss of enzyme activity. Detailed investigations of R42E and R42K chitosanases revealed that the mutant enzymes are not only impaired in their catalytic activity but also in their mode of interaction with the substrate. Mutated enzymes were more sensitive to substrate inhibition and were altered in their pattern of activity against chitosans of various degrees of deacetylation. Our data show that Arg42 plays a dual role in CsnN174 activity. Conclusions: Arginine 42 is essential to maintain the enzymatic function of chitosanase CsnN174. We suggest that this arginine is influencing the catalytic nucleophile residue and also the substrate binding mode of the enzyme by optimizing the electrostatic interaction between the negatively charged carboxylic residues of the substrate binding cleft and the amino groups of GlcN residues in chitosan.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据