4.6 Article

Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique

期刊

RSC ADVANCES
卷 5, 期 43, 页码 33930-33937

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra03906a

关键词

-

向作者/读者索取更多资源

Nanofibres prepared by electrospinning have shown enormous potential for various applications. They are obtained predominantly in the form of nonwoven fibre webs. The 2-dimensional nonwoven feature and fragility have considerably confined their further processing into fabrics through knitting or weaving. Nanofibre yarns, which are nanofibre bundles with continuous length and a twist feature, show improved tensile strength, offering opportunities for making 3-dimensional fibrous materials with precisely controlled fibrous architecture, porous features and fabric dimensions. Despite a few techniques having been developed for electrospinning nanofibre yarns, they are chiefly based on the needle electrospinning technique, which often has low nanofibre productivity. In this study, we for the first time report a nanofibre yarn electrospinning technique which combines both needle and needleless electrospinning. A rotating intermediate ring collector was employed to directly collect freshly-electrospun nanofibres into a fibrous cone, which was further drawn and twisted into a nanofibre yarn. This novel system was able to produce high tenacity yarn (tensile strength 128.9 MPa and max strain 222.1%) at a production rate of 240 m h(-1), with a twist level up to 4700 twists per metre. The effects of various parameters, e. g. position of the electrospinning units, operating conditions and polymer concentration, on nanofibre and yarn production were examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据