4.7 Article

JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2

期刊

BLOOD
卷 124, 期 19, 页码 2996-3006

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2014-04-570572

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [KAKENHI 12020240]
  2. Grants-in-Aid for Scientific Research [26860474] Funding Source: KAKEN

向作者/读者索取更多资源

Genetic instability is strongly involved in cancer development and progression, and elucidating the mechanism could lead to novel therapeutics for preventing carcinogenesis. Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal myeloid disorders with a high prevalence of JAK2V617F mutation, and transformation to acute myeloid leukemia through accumulation of additional mutations is a major complication in MPNs. Here, we showed that JAK2V617F(+) cells conferred paracrine DNA damage to neighboring normal cells as well as to themselves through increased reactive oxygen species (ROS). We screened candidate factors responsible for the effect and found that lipocalin-2 (Lcn2) is overexpressed in JAK2V617F(+) cells and that short hairpin RNA-mediated knockdown of Lcn2 significantly alleviated the paracrine DNA damage. Normal hematopoietic cells showed elevated ROS levels through increased intracellular iron levels when treated with lipocalin-2, which led to p53 pathway activation, increased apoptosis, and decreased cellular proliferation. In contrast, JAK2V617F(+) cells did not suffer from lipocalin-2-induced growth suppression resulting from attenuated p53 pathway activation, which conferred a relative growth advantage to JAK2V617F(+) clones. In summary, we demonstrated that JAK2V617F-harboring cells cause paracrine DNA damage accumulation through secretion of lipocalin-2, which gives proliferative advantage to themselves and an increased risk for leukemic transformation to both JAK2V617F(+) and JAK2V617F(-) clones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据